Regulation of intracellular pH and blood flow in rat duodenal epithelium in vivo.
نویسندگان
چکیده
Duodenal mucosal defense was assessed by measuring blood flow and epithelial intracellular pH (pHi) of rat proximal duodenum in vivo. Fluorescence microscopy was used to measure epithelial pHi using the trapped, pHi-indicating dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM. Blood flow was measured with laser-Doppler flowmetry. The mucosa was briefly superfused with NH4Cl, pH 2.2 buffer, the potent Na+/H+exchange inhibitor 5-( N, N-dimethyl)-amiloride (DMA), or the anion exchange and Na+-[Formula: see text]cotransport inhibitor DIDS. Cryostat sections localized dye fluorescence to the villus tip. Steady-state pHi was 7.02 ± 0.01, which remained stable for 60 min. Interventions that load the cells with protons without affecting superfusate pH (NH4Cl prepulse, nigericin with low superfusate K+ concentration, DMA, and DIDS) all decreased pHi, supporting our contention that the dye was faithfully measuring pHi. An acid pulse decreased pHi, followed by a DIDS-inhibitable overshoot over baseline. Intracellular acidification increased duodenal blood flow independent of superfusate pH, which was inhibited by DMA, but not by DIDS. We conclude that we have established a novel in vivo microscopy system enabling simultaneous measurements of pHi and blood flow of duodenal epithelium. Na+/H+exchange and Na+-[Formula: see text]cotransport regulate baseline duodenal epithelial pHi. Intracellular acidification enhances duodenal blood flow by a unique, amiloride-inhibitable, superfusate pH-independent mechanism.
منابع مشابه
Acute adaptive cellular base uptake in rat duodenal epithelium.
We studied the role of duodenal cellular ion transport in epithelial defense mechanisms in response to rapid shifts of luminal pH. We used in vivo microscopy to measure duodenal epithelial cell intracellular pH (pH(i)), mucus gel thickness, blood flow, and HCO secretion in anesthetized rats with or without the Na(+)/H(+) exchange inhibitor 5-(N,N-dimethyl)-amiloride (DMA) or the anion transport...
متن کاملAcid-sensing protective mechanisms of duodenum.
The proximal duodenal mucosa, exposed to frequent pulses of gastric acid, is functionally "leaky", increasing the importance of defense mechanisms such as the mucus gel layer, cellular acid/base transporters, bicarbonate secretion, and mucosal blood flow. Our laboratory has used a unique in vitro perfused microscopic system to measure thickness of the adherent mucus gel (MGT), intracellular pH ...
متن کاملShort-term Chelating Efficacy of Deferoxamine in Iron Overloaded Rat Hepatocytes
Abstract Background: Iron overload is a clinical consequence of repeated blood transfusions and causes significant organ damage, morbidity, and mortality in the absence of proper treatment. The primary targets of Iron chelators used for treating transfusional Iron overload are the prevention of Iron ingress into tissues and its intracellular scavenging. The present study was aimed at elucid...
متن کاملEffect of esophagus distension on gastric blood flow, gastrin and somatostatin secretion in rat
Abstract Introduction: There are many studies about the inhibitory effect of the esophageal distention (ED) on gastric motility. Recently, it has been shown that ED decreases the gastric secretions. It is well established that the inhibitory effect of ED is mediated by activation of vago-vagal inhibitory reflex. However, there is not any investigation about the effect of the reflex on the gast...
متن کاملSodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium
BACKGROUND The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. METHOD/PRINCIPAL FINDINGS Immunofluorescence staining of pan cytokeratin in the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 1999